Thursday, January 14, 2010

Technologies of affective computing

Emotional speech
Emotional speech processing recognizes the user's emotional state by analyzing speech patterns. Vocal parameters and prosody features such as pitch variables and speech rate are analyzed through pattern recognition.
Emotional inflection and modulation in synthesized speech, either through phrasing or acoustic features is useful in human-computer interaction. Such capability makes speech natural and expressive. For example a dialog system might modulate its speech to be more puerile if it deems the emotional model of its current user is that of a child.

Facial expression
The detection and processing of facial expression is achieved through various methods such as optical flow, hidden Markov model, neural network processing or active appearance model. More than one modalities can be combined or fused (multimodal recognition, e.g. facial expressions and speech prosody or facial expressions and hand gestures) to provide a more robust estimation of the subject's emotional state.

Body gesture
Body gesture is the position and the changes of the body. There are many proposed methods to detect the body gesture. Hand gestures have been a common focus of body gesture detection, apparentness methods and 3-D modeling methods are traditionally used.

Visual aesthetics
Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty. Judging beauty and other aesthetic qualities is a highly subjective task. Computer scientists at Penn State treat the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated on-line photo sharing Website as data source. They extract certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. The work is demonstrated in the ACQUINE system on the Web.

Potential applications
In e-learning applications, affective computing can be used to adjust the presentation style of a computerized tutor when a learner is bored, interested, frustrated, or pleased. Psychological health services, i.e. counseling, benefit from affective computing applications when determining a client's emotional state. Affective computing sends a message via color or sound to express an emotional state to others.
Robotic systems capable of processing affective information exhibit higher flexibility while one works in uncertain or complex environments. Companion devices, such as digital pets, use affective computing abilities to enhance realism and provide a higher degree of autonomy.

Other potential applications are centered around social monitoring. For example, a car can monitor the emotion of all occupants and engage in additional safety measures, such as alerting other vehicles if it detects the driver to be angry. Affective computing has potential applications in human computer interaction, such as affective mirrors allowing the user to see how he or she performs; emotion monitoring agents sending a warning before one sends an angry email; or even music players selecting tracks based on mood.

Affective computing is also being applied to the development of communicative technologies for use by people with autism.

No comments: